Simulation-Based Verification
of Autonomous Controllers
via Livingstone PathFinder

Tony Lindsey (QSS Group, NASA Ames)
Charles Pecheur (RIACS, NASA Ames)

Controller

f state estim.
I

Diagnosis

T Sensors
I

commands

Plant

TACAS '04

Ames Research Center

Ames Research Center

Driver

T
E
S
T X Diagnosis
B
E % SCITOUINS
D (]

R Simulator

commands

& faults

TACAS '04 3

Driver

T

E

S get state
. . set state

T X Diagnosis single step

E . backtrack

D []

R Simulator
commands
& faults
TACAS '04

Ames Research Center

Search
Engine

Autonomy at NASA

Ames Research Center

Autonomous spacecraft = on-board intelligence (AI)

* Goal: Unattended operation in an
unpredictable environment

* Approach: model-based reasoning

* Pros: smaller mission control crews,
no communication delays/blackouts

 Cons: Verification and Validation ???
Much more complex, huge state space

e Better verification is critical for adoption commands

T observatio
v model of
Spacecraft

TACAS '04

Controller
Reasoning Domain
Engine Model

5

Model-Based Diagnosis

* Focus on Livingstone system from NASA Ames.

Ames Research Center

* Uses a discrete, qualitative model to reason about faults

Controller

pUBWIWO)D

Observations

Courtesy Autonomous Systems Group, NASA Ames

TACAS '04 6

rl=inf

rl=inf/normal/low
vIl=normal m v2=zero/normal/low

display=zero

mode=o0k?/dead*

display=v2 /

display=zero/normal

Ames Research Center

1=..(vlrl,r2)
v2=..vlrlr2)

i=zero/normal/high

r2=normal
light=...

light=off/on

r2=inf
light=off

r2=low
light=off

\mode=0k0ﬂ)10wn1/sh0rt4

r2=inf/normal/low

V=ZE10
breaker | bulb meter rank
Goal: determine modes from observations off® | ok? ok! 0
Generates and tracks candidates off? ok® | blown!
on’ dead? | short?4 8

TACAS '04

Ames Research Center

Faults

Errors

Ex: valve 1s stuck

Ex: fault not detected

in Plant/Simulator

in Diagnosis/Design

Spontaneous physical event

Human design flaw

To de detected by Diagnosis

To be detected by Verification

TACAS '04

: «_Scenario
Driver (w/ branches)

Livingstone

get state

set state
Engine single step
backtrack

A

SCITSUINS

Omw-wm -

commands

Simulator

& faults

Similar to VeriSoftlGodefroid 97]

Uses checkpointing implemented in Livingstone
In Java, accesses Livingstone (C++) through JNI

TACAS '04

Ames Research Center

Search
Engine

v

event :=
Driver.getNext()

1

Simulator.apply(event)

event.isCommand()

true false

¥

Diagnosis.notify(event)

obs :=
Simulator.getObservations()

Diagnosis.update(obs)

Ames Research Center

Driver

Scenario
(w/ branches)

Diagnosis

Omow-—-Hwm -

Engine

A

obs

event

Simulator

10

MC
O
CS

Diagnosis candidates are "correct” w.r.t. Simulator modes

Mode Comparison (MC): first candidate is correct

Candidate Matching (CM): some candidate is correct

Ames Research Center

Candidate Subsumption (CS): some candidate's faults are included

CS may miss errors but works best in practice

i

a

—

M|

breaker bulb meter
off? ok! ok!
off? ok! blown!
Kon0 dead? short*
Freaker bulb
off? dead?
—

meter
blownj/

TACAS '04

11

Ames Research Center

Defines the tree of executions to be explored

Described as a non-deterministic program
using a simple scripting language

stmt = " event" ; 1 D:
| { stmt* }
| mix stmt (and stmt)* I IR
| choose stmt (or stmt)* il - :

Implemented as a hierarchy of automata objects
matching the scenario script structure

TACAS '04 12

Ames Research Center

Framework allows to use any (suitably instrumented)
simulation software
Trade-off: higher-fidelity simulators may restrict instrumentation

Current implementation uses second Livingstone engine as
simulator

|
Same or different model i L |
Different mode of operation: I .
Diagnosis : cmds, obs —> modes .
Simulator : cmds, modes —> obs 1 |:

Simulator comes "for free"
Rationale: verify diagnosis assuming the model is correct

Also considered: CONFIG (hybrid, NASA JSC)

TACAS '04 13

Ames Research Center

The whole testbed is seen as a transition system

API to enumerate transitions, backtrack, get/set state
Shared with Java PathFinderlVisser etal. 00]

Principle inspired from OPEN/CAESAR [Garavel 98]
Search engine fixes exploration strategy

Depth-First: simplest, most efficient ik |

Heuristic: valuation function on states s
(e.g. number of diagnosis candidates) r |

Breadth-First t |

Others are possible (random, pattern-based,
interactive)

TACAS '04 14

Ames Research Center

Propulsion feed system of space vehicle
Livingstone model: 2300 lines, 823 vars, =103 states (SMV)

Two scenarios:

Random Scenario (10216 states):
sequence of commands Il choice of faults

PITEX Scenario (89 states):

pppppppp

5 ° — D~ [oK
oa I IS » nmgr
(@) v o %
B , vy —
— S wetame — @ .@A &
£ 7 v v I mw:u’zvaz
— ¢ X
[= =
ererererer 5 .Ig: sz
7
b (-5 -
—
rgﬂ@ (? MMMMMMMM
T q) mmmmmmmm
rm@]
nL ra0:
— 9B =
TACAS ,04 Fy— G verserre 15
1
T

Ames Research Center

scenario | strategy | search lfc‘ondition errors non—trivm states | /States/min
baseline DFS all CM 27 4 89 44
baseline DFS all CS 0 0 89 67
random DFS all CM 9621 137 | 10216 51
random DFS all N CS 5 M 10216 5

scenario search | condition | max. depth state“ states/min
random one CS 16 | 8648 49
random one CS 154 38
random one CS 154 38

DFS=depth-first, BFS=breadth-first, CC=candidate-count
all=all errors, one=first error, min=shortest trace
CM=candidate matching, CS=candidate subsumption

trivial error=no fault reported

TACAS '04 16

Ames Research Center

Extend search options
More heuristics (including application-specific)
New search strategies (randomized, coverage-based)
Improve usability
GUI, post-process and display results

Generalize to reactive control

From fault detection to fault recovery
In progress: adapt LPF to Titan (MIT)

Other approach: apply SMV (and BMC) to Livingstone
models, verify diagnosabilitylCimatti etal. 03]

using Livingstone-to-SMV translator!Pecheur etal. 00]

TACAS '04 17

Extra Slides

Ames Research Center

TACAS '04 18

Ames Research Center

Verify what?

Model Correctness: the model 1s OK
1.e. the model 1s a valid abstraction of the plant

Engine Correctness: the software 1s OK
1.e. all that can be diagnosed is correctly
diagnosed

Diagnosability: the design is OK

i.e. all that needs to be diagnosed can be
diagnosed

In principle, 1+2+3 => diagnosis will be correct
Here we look at 3 only! 19

TACAS '04

mix {
"command test.sv02.valveCmdIn=close";
"command test.sv02.valveCmdIn=open";
} and {
choose
"fault test.forwardLO2.mode=unknownFault"; or
"fault test.mprelOlp.mode=faulty"; or

choose { "fault test.mpre202p.mode=biased"; }
or { "fault test.mpre2l2p.mode=biased"; }
or {
"command test.sv3l.valveCmdIn=open";
choose {
"fault test.sv3l.sv.mode=stuckOpen";
"command test.sv3l.valveCmdIn=close";
} or {
"command test.sv3l.valveCmdIn=close";

Py}

Ames Research Center

20

